Ash at CIID

Ashwin Rajan's blog while at the Copenhagen Institute of Interaction Design.

Visualizing Wind

leave a comment »

This mini-project was executed as part of the Computational Design course at CIID some weeks back. My objective was to use the Nintendo Wii to record simple wind data by suspending the Wii in an open location, and using the recorded data to create visualizations drawn by programming in Processing. More details follow.

The Concept:
This intent is to show  a concept for visualization of simulated wind data as would be available from a sensor located on a windmill.
A real stakeholder – wind data analyst – from a leading Danish consultancy was interviewed to understand key challenges in wind turbine design.
It is common in the Danish wind industry (and elsewhere) to record wind data for very small intervals of time. By understanding wind patterns in terms of its properties such as acceleration and constancy, engineers are able to go beyond physical limitations of turbine design to evolve increasingly efficient and productive systems.
With over 20 sensors recording different parameters on a single windmill, analysts often face a veritable mountain of data (down to individual seconds). In this context, visualization of such data in a manner that facilitates comparison, causality and multivariant evidence becomes key. The poster describes briefly how some of these goals were met.

The delightful ‘Wiimote’ was used in this experiment to mimic the sensor.

Design Context: A real world scenario 
Location: a wind farm out in the North Sea
o   72 turbines
o   20 sensors on each turbine
o   Each sec of wind data recorded
o   Data from 8 years archived for analysis

·      The peak production of windmills of all capacities is 60% of full capacity due to physical limitations
·      Measuring constancy of wind is of most interest to wind analysts and windmills designers
·      Acceleration of wind is most deterrent to wind production as it wears out the material most, and least load on the material comes from constancy of wind
·      The main difficulty in real-world wind turbine design isn’t generating the most electricity at a given speed – it is making blades which will work across a range of wind speeds
·      The design challenge is to be able to measure and visualize wind data in a way that can help engineers interpret the ‘acceleration’, ‘lift’ and ‘orientation’ of wind.

Using the Wii Remote as principle sensor
Wii remote sensors simulate the acceleration of wind by it’s x, y, z acceleration coordinates
·      In order to holistically render the acceleration of wind in a visual manner, we have focused on gathering data in coordinate directions x and y, and rendered the z axis insignificant – by suspending the sensor (in this case, the Wiimote) with a cord of fixed length.
·      Due to the position of the Wii remote when recording the raw wind data, the x and y coordinates are principle axis in this experiment. This has two benefits
o   The z sensor is rendered insignificant in terms of contributing to measuring acceleration, thus rendering it simpler by reducing the number of variables required in its calculating
o   The z axis becomes dedicated to measuring ‘lift’ and denoted here by the small series of arcs at the bottom.

Anatomy of a second - Composite View
Anatomy of a second – Composite View

 

And another mode of visualizing the same data set …

anatomy-of-a-second-02

 

 

Advertisements

Written by Ashwin Rajan

November 30, 2008 at 9:00 pm

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: